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1 Introduction 

Hash-based signature (HBS) schemes are known for decades but they were not really considered for further 

research or practical applications in the past. This changed when the need for post-quantum cryptography 

(PQC) emerged that could withstand attacks by quantum computers. 

The standardization of stateful hash-based signature (HBS) schemes started with the publications of the 

IETF RFCs for the eXtended Merkle Signature Scheme (XMSS) and Leighton-Micali hash-based signature 

(LMS) in 2018 and 2019, respectively [8],[11] . In 2020 the National Institute of Standards and Technology 

(NIST) published further recommended parameter sets [7]. The German Federal Office for Information 

Security (BSI) specifies both algorithms in their own publications [5]. Since their standardization, stateful 

HBS algorithms have been deployed in several products ranging from embedded devices up to servers 

[3],[6],[12]. Due to their inherent nature of statefulness, the number of signatures that can be created with a 

key pair is limited, which also limits the range of applications. In practice, they are most applicable to verify 

the integrity and authenticity of data that rarely changes, such as the firmware of embedded devices. The 

verification procedure then takes place during a secure boot or firmware update process. In past works, the 

research community has investigated hardware and software optimizations for this use case [9],[10],[15],[17] 

and vendors brought forward products [12]. 

These efforts demonstrate the need for a post-quantum secure boot and firmware update process. An 

adversary who can circumvent such a process can execute malicious firmware, which compromises the 

security of embedded devices completely. Over time, researchers have established, that fault attacks pose a 

considerable threat to exposed embedded devices, e.g. by allowing exactly such a circumvention of the 

secure boot process [4],[13]. Developers of secure boot libraries such as MCUboot1 and microcontroller 

manufacturers have recognized this by introducing countermeasures against such attacks in the basic 

control flow [2]. The cryptographic implementations, however, often remain unprotected. 

In this report, we practically evaluate a fault attack on the Winternitz One-Time Signature (WOTS) scheme 

published in [16]. The attack can be mounted on different HBS schemes, such as LMS, XMSS, and SPHINCS+. 

Both, the verification as well as the signing operation can be targeted. In the original publication, the attack 

is considered theoretically and evaluated with the help of simulations. In this report, we evaluate the attack 

practically on a microcontroller using laser fault injection (LFI) as method of attack. We focus on XMSS and 

the signature verification process with secure boot as an exemplary use case. 

Attack setting. We target a signature verification operation in the secure boot setting. Hence, the attacker 

has access to the device containing the public key used for firmware verification. Instead of trying to 

entirely skip the secure boot process, the fault attack targets the internal structure of XMSS scheme. Hence, 

this enables an alternative attack path to other attacks on the execution flow on susceptible targets. 

 

                                                                 
1 https://github.com/mcu-tools/mcuboot



2 Background 

 

Federal Office for Information Security 7 

2 Background 

In this section, we outline the WOTS and based on that introduce the basics of the stateful HBS scheme 

XMSS. The level of detail is kept so that the basic principle becomes clear and is sufficient to understand the 

attack. 

2.1 Winternitz One-Time Signature 

We briefly introduce the structure of WOTS and explain how it is used as a fundamental building block in 

the HBS algorithm XMSS [8]. Note, that this section does not consider any fault attacks, but focuses only on 

the cryptanalytic security. 

To generate a WOTS signature, a message is hashed into an n-byte value m. The message digest m is split 

into l1 chunks. Each chunk is interpreted as a value mi = 𝒩(m, i), i.e. the function 𝒩 maps the i-th chunk of 

m to mi, where mi ∈ [0, w − 1] and i ∈ [0, l1 − 1]. The parameter w is the Winternitz parameter. 

Each of the values mi is assigned an individual hash chain consisting of w nodes, each represented by an n-

byte value. The start node is the one-time signature (OTS) secret key (red), and the end node the OTS public 

key (yellow). Advancing from one node to another is realized by applying a function ℱ to the current node. 

The output of ℱ serves as the next node. The end nodes are combined by applying the function 𝒦 to obtain 

the compressed OTS public key. Although the exact implementations of ℱ and 𝒦 may differ, we assume 

both to be single calls to a cryptographic hash function. In reality, before being hashed, the node data might 

be - depending on the scheme - pre-processed with masks and keys, which are also the output of a hash 

function. 

To sign (red → blue) or verify (blue → yellow) a mi the corresponding hash chain is advanced by applying ℱ. 

For signing, ℱ is applied mi times to the respective secret key node (red) and the resulting node (blue) is 

taken as part of the WOTS signature. For verifying, the signature node (blue) is taken as basis and advanced 

w − 1 − mi times. If this does not yield the public key (yellow), the verifier rejects the signature. 

If the WOTS scheme were used just with the l1 hash chains representing the message digest m, an adversary 

could trivially sign any message, where the digest r consists only of chunks ri, where ri ≥ mi, ∀i ∈ [0, l1 − 1]. 

This is because the adversary gains information about intermediate hash chain nodes from the original 

signature. Information that was prior to the signing operation, is private. The adversary can simply advance 

all signature nodes by ri −mi to forge a signature. To mitigate this, a checksum mechanism is part of the 

Figure 2.1: Simplified Winternitz One-Time Signature – w = 4 and n = 1 – with the nodes of the secret key (red), the 

public key (yellow), and the signature (blue) highlighted. 
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WOTS scheme. In addition to the message digest and its corresponding signature nodes, each WOTS 

signature consists also of a checksum c, which has its own signature nodes (Figure 2.1). The calculation of 

the checksum c for a message digest m is shown in Equation (2.1). 

𝑐 =  𝒞(𝑚) =  ∑ (𝑤 − 1 − 𝑚)               (2.1)

𝑙1−1

𝑖=0

 

Put in simple terms, c corresponds to the sum of “steps left” over all message hash chains. The value c is split 

into l2 checksum chunks ck, where k ∈ [0, l2 − 1] and l2 is defined in Equation (2.2). The mapping between c 

and checksum chunks ck is defined by the function 𝒩(c, k), similar to the mapping between message digest 

m and message chunks mi. 

𝑙 =  𝑙1 + 𝑙2, 𝑙1 = ⌈
8𝑛

𝑙𝑜𝑔2 (𝑤)
⌉ , 𝑙2 =  ⌊

𝑙𝑜𝑔2 (𝑙1(𝑤 − 1))

𝑙𝑜𝑔2 (𝑤)
⌋ + 1               (2.2) 

For the final signature, message chunks and checksum chunks are appended, so that m0 | m1 | . . . | ml1-1 | c0 | 

c1 |... | cl2 −1. By doing an index transformation from k ∈ [0, l2 − 1] to j ∈ [l1, l − 1], we map ck = mj, so that we can 

simplify our signature to a continuous series of m0 | m1 | . . . | ml1-1, where mi are nodes corresponding to 

message chunks and mj are nodes corresponding to checksum chunks. With the checksum nodes, it is now 

guaranteed that for a malicious message digest r for which ri ≥ mi, ∀i ∈ [0, l1− 1] the checksum c′ < c. 

Therefore, the adversary would have to get to a preceding node from the current node for at least one 

checksum chain. This is impossible from an algorithmic perspective, as these preceding nodes are neither 

public nor computable. 

2.2 eXtended Merkle Signature Scheme 

For most of today’s applications of digital signatures, a one-time signature scheme like WOTS alone can 

hardly ever be used. Therefore, many-time signature (MTS) schemes like XMSS and LMS combine WOTS 

with one or multiple Merkle trees. Its structure is depicted in Figure 2.2. These schemes are stateful, i.e. the 

amount of signatures that can be created with one key pair is greater than one but still limited and the 

signer needs to keep track of the signatures that were already used (maintain a state). As in the previous 

section, WOTS is used to sign the initial message digest. The WOTS public key nodes (yellow) correspond to 

the leaf nodes of a Merkle tree. The root node of the tree (orange), in turn, corresponds to the XMSS public 

key. Therefore, a Merkle tree with a tree height of h can authenticate 2h WOTS key pairs, each of which can 

be used once. 

To sign a message, the signing entity publishes the WOTS signature (blue) and the so-called authentication 

path (purple). These nodes are used by the verifying entity to compute the root node and check whether it 

matches the Merkle signature scheme (MSS) public key (orange). 

2.3 Fault Attack against XMSS 

The attack of [16] enables an adversary to choose an arbitrary message and create a valid signature, which 

we refer to as forged signature throughout this report. This is possible, e.g. by altering the hashed content by 

appending a counter to the payload message. The forged signature can be generated if the adversary has at 

least one signature which was signed with the secret key. The fault attack targets the checksum mechanism 

of the WOTS scheme to render it ineffective. Before the fault injection attack a brute-force phase is 

necessary to generate a forged signature that fits the fault capabilities of the adversary. 
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2.3.1 Brute-Force Forgery of WOTS 

In the following, we first assume that the checksum mechanism is not part of the WOTS scheme, i.e. is 

ineffective due to the injected fault. Without the checksum, a WOTS of the message digest m created by an 

entity A can be used to sign other message digests, e.g. to forge a signature for a malicious payload. This is 

possible as the hash chains can be advanced by repeatedly hashing the signature chunks. To be able to 

exploit this, the adversary needs to be in possession of a message digest r, so that ri ≥ mi ∀i (ri = 𝒩(r, i) and mi 

= 𝒩(m, i), see Section 2.1). 

The forged signature behaves as if A had signed r using its secret key. Finding a message which maps to such 

a message digest r is only possible through brute-force search, due to the preimage resistance of the 

underlying hash function. Even if the adversary has a specific target message, e.g. in the form of a binary, an 

infinite number of potential forgery targets can be generated by e.g. appending a counter to the payload. 

The runtime of the brute-force search depends on the number of signatures an adversary has, the 

parameters of the algorithm as well as the available hardware resources. A detailed cost estimation for 

different parameters and hardware can be found in the original publication of the attack [16]. 

2.3.2 Fault Attack on Checksum Chains 

If the adversary is in possession of a malicious message digest r, so that ri ≥ mi ∀i, the checksum of r will 

always be lower than that of m. The checksums cannot be equal as this would imply that all chunks of m and 

r are equal. We disregard the case where the adversary selects its malicious message to be equal to the 

original message, as this would be of no benefit. Further, if the digests r and m are equal but not the 

messages, this would resemble an highly unlikely second preimage attack. 

However, for some checksum chunks rj = 𝒩(𝒞(r), j) and mj = 𝒩(𝒞(m), j), rj ≥ mj may still hold. For these, the 

adversary can simply reuse or advance chains of the signature of m for her forgery. But, if rj < mj, the 

adversary must know prior nodes of the OTS checksum hash chain. Recovering prior nodes by inverting ℱ 

Figure 2.2: The Merkle signature scheme (MSS). 
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is impossible as it is based on a cryptographic hash function. To overcome this issue, a fault attack is used to 

force a node to a lower level on the chain than required by the respective checksum chunk. 

Consider a value v ∈ [0, w − 1] for checksum chunk mj = v. Then, the corresponding signature node sigj is 

advanced v or w − v − 1 times, i.e. ℱw−v−1(sigj). The fault attack forces the implementation to use values 

smaller than the actual v, or w − v − 1, respectively. If the verifying entity is attacked, a correct public WOTS 

key is derived from nodes too far progressed. With the fault, the adversary is able to forge a valid WOTS for 

r. 

In this report, we do not go into the theoretical analysis of the attack and refer to the original publication 

[16]. 

2.3.3 Faulting WOTS to break XMSS 

So far we have established how an adversary can forge a WOTS signature with fault injection. This section 

establishes that faulting WOTS is sufficient to break XMSS and describes the attack an adversary can mount 

on this scheme. 

For the single tree variant of the XMSS algorithm, the adversary is limited to attacking the only WOTS 

instance that is signing the actual message digest. A successfully forged WOTS signature is also valid for 

XMSS as the Merkle tree in this scheme only authenticates the WOTS public key. 

In case the XMSS verification is attacked, the adversary is able to collect a set of signatures. These signatures 

are used as an input for the brute-force phase. Depending on the faulting capabilities of the adversary, the 

success probability of the brute-force phase, and therefore also the computational cost, vary. 

During the fault injection, the adversary tries to force the verifier to not advance a checksum hash chain as 

determined by the respective checksum chunk, i.e. manipulate ℱw−v−1(sigj) to ℱo(sigj), where o < w − v − 1. A 

straightforward approach for the adversary is to manipulate the victim, so that o = 0. In this case, the chain 

calculation of a checksum chunk is skipped entirely and the sigj node of the forged signature is forwarded 

directly to the computation of the WOTS public key candidate. To achieve verification, the adversary sets 

sigj to the top value of the respective chain, so that the correct public key is computed. In [16], the 

assumptions on the adversary, where setting o = 0, ∀j is possible and more constrained assumptions, where 

only individual checksum hash chains are (partly) skipped is evaluated in detail. As described above, these 

scenarios imply different degrees of freedom for the brute-force phase. 

The malicious payload and the forged signature are forwarded to the target device for verification. To trick 

the verifier into accepting the invalid signature containing an invalid OTS for the checksum, an adversary 

applies the fault attack as described above. The fault injection was not successful, if the verifier advances this 

hash chain too far and calculates an invalid compressed OTS public key, which fails verification. If the fault 

injection was successful, the verifier derives the correct WOTS public key, the signature is verified as valid, 

and the malicious payload is accepted by the target device. 
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3 Laboratory Evaluation 

In this section, we describe the laboratory evaluation of the fault attack against XMSS. We start with the 

description of our experimental setup in Section 3.1. In Section 3.2, we analyze the target microcontroller 

that runs the XMSS signature verification. Finally, in Section 3.3, we evaluate the feasibility and 

practicability to circumvent the signature verification of XMSS with the help of LFI. 

3.1 Experimental Setup 

We use the double laser fault injection microscope (D-LMS) from Alphanov [1] as LFI setup. The laser setup 

is equipped with two laser beams with a wavelength of 1064 nm each. For a precise pulse generation and 

delay of the trigger signal to control the laser, we use the integrated Tombak pulse and delay generator. 

As target device, we use a microcontroller of the STM32F4 series from STMicroelectronics, namely the 

STM32F401RBT6. This decision was based on the hardware requirements for the studied algorithm with 

respect to memory and computational power. This microcontroller was already analyzed in a 

comprehensive study [14] about the susceptibility of microcontrollers to LFI. The STM32F4 has shown to be 

susceptible to single-bit static random-access memory (SRAM) faults without side effects such as latch-ups. 

The target microcontroller is opened from the backside and soldered bottom up on a printed circuit board 

(PCB) which is mounted on a CW308 board from NewAE Technology. The target board is depicted in Figure 

3.1. The CW308 motherboard is mounted on a motorized tilt and rotation table inside the Alphanov D-LMS. 

As additional target we chose a device of the STM32L4 series. On this device we were not able to precisely 

inject faults in SRAM. In Appendix B, we evaluate the whether remaining substrate thickness (RST) 

influences the susceptibility to LFI and single bit faults in the SRAM region in particular. 

Figure 3.1: CW308 target board for the STM32F401RBT6 microcontroller. 
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3.2 Device Analysis 

In this section, we perform an initial analysis of the microcontroller in order to determine the spatial 

location for a fault attack on the chip as well as suitable parameters for effective faults. This information is 

necessary for the practical attack on XMSS in Section 3.3. 

In order to identify the locations of the different peripherals of the microcontroller, we take an IR picture of 

the backside of the chip. In Figure 3.2, an overview picture of the STM32F4 microcontroller is shown. Since 

the goal is to tamper with the data on the target microcontroller, we search for the SRAM. Based on this 

overview, we identify the location of the flash memory (red) and the SRAM (green) on the device. We 

identified these regions due to their regular structures. The flash memory can be distinguished from SRAM 

through its more complex read and write logic right next to it. The SRAM is organized in two blocks of equal 

size. 

In a next step, we perform fault injection tests on the edges of both SRAM blocks. With that we determine 

the relation between the spatial location of the injected fault and the memory address of the SRAM. During 

this process we also narrow down the parameter space that is suitable to inject faults in the memory. Later, 

we will fine tune these parameters such that we can precisely inject faults on a certain memory word and bit 

position in the SRAM. To identify the memory organization we perform a grid scan of 12x12 positions. 

In Figure 3.3, the mapping between spatial location and memory word indices for both SRAM blocks is 

depicted. The left plot shows the behavior on the first (upper) SRAM block and the right plot for the second 

(lower) block. In the first SRAM block, the words are organized horizontally whereas in the second block, the 

words are organized vertically. One can see that the indices increase from right to left and from top to 

bottom for the left and right plot, respectively. This reflects the 90 degree rotation of the two memory 

blocks. From the picture we infer that the highest address is located at the right side of the second SRAM 

block. In Figure 3.3 one can see that there are memory locations where there is no fault effect. Hence, only 

the memory organization is revealed by the experiment and not the location of certain memory addresses. 

In Section 3.3 we fine tune the parameters to target for a specific memory location. 

Based on this evaluation we can deduce that the SRAM is split into two regions: the first block (upper) covers 

the address region from 0x20000000 to 0x20007fff. The second block (lower) covers the memory from 

0x20008000 to 0x2000ffff. 
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Figure 3.3: Heatmaps of the memory address faulted within for a small region inside the first (a) and second (b) 

SRAM block in relation to position with step-size 1µm. The color indicates the offset of a faulted memory word. 

Figure 3.2: Backside infrared (IR) die shot of the STM32F401RBT6 microcontroller. The flash memory region is 

highlighted in red and the SRAM region in green. The gradient within the SRAM highlights the memory addresses 

deduced in Figure 3.3. 
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3.3 Practical Attack on XMSS 

In this section, we use the gained knowledge of the previous analysis to mount the actual attack on the 

XMSS verification operation. 

To implement a verification application that shall represent a secure boot use case, we use the XMSS 

reference library2. For the hash operations required for XMSS, the tinycrypt3 library is used. The STM32F4 

microcontroller is configured for a core clock frequency of 16 MHz. As XMSS parameter set, we use XMSS-

SHA2-10-192, being one of the recommended parameter sets by NIST [7]. With this parameter set we have 

51 hash chains where the last three chains are used for the checksum. 

We have made this decision in order to keep the brute-force search for a forged signature within a time 

frame that is practicable. The source code of the verification application is listed in Listing 5-1. The firmware 

first initializes the microcontroller and the necessary peripherals. Afterwards a message and its 

corresponding signature are verified. In order to keep the application as simple as possible, the message and 

the signature are hard-coded in memory. 

After the device initialization, the firmware calls the verify_signature() function which calls the 

xmss_sign_open() function of the XMSS reference library to verify the signature. The result of the verification 

is stored in a variable passed as pointer to the function. To indicate whether the signature was successfully 

verified or not, we use the global variable device_status. This variable is read out via the debug interface by 

our evaluation tool after every experiment is executed. At the beginning this variable is set to an initial 

value, see line 52 of Listing 5-1. This allows us to identify if the injected laser fault crashed the firmware 

execution. 

The firmware is executed from SRAM in order to prevent us from always having to write the firmware to 

the flash memory. Note that this does not influence the experiments and is just for the sake of convenience. 

Signature Forgery. We generate a forged signature using the brute-force approach mentioned in Section 

2.3.1. The required computational resources can be estimated with the results given in [16]. If the adversary 

possesses 100 valid signatures, a suitable signature is found with a probability of 50 % after around 104 GPU 

seconds. In our case the found signature requires a fault attack in the first checksum chain. In this chain, we 

need to force the second bit, changing the value from 0 to 2. 

In Table 3-1, the hash chain length values before and after the fault injection are listed. The modified value 

in the 49th hash chain element is highlighted in boldface and red. 

Table 3-1: Hash chain values of the forged signature before and after the fault attack. 

1 2 3 4 5 … 48 49 50 51 

Before 7 10 7 10 12 … 8 0 14 13 

After 7 10 7 10 12 … 8 2 14 13 

Fault Location. The fault attack against the XMSS verification operation requires that the number of hash 

operations is tampered such that the public key generated with the forged signature matches the public key 

stored in the memory of the device. 

The function in the XMSS reference library that calculates the public key from a signature is called 

wots_pk_from_sig(). In Listing 3-1, the source code of this function is listed. In line 9, the number of hash 

operations is calculated and stored in the array lengths. The for loop in line 11 to 17 then performs the hash 

operations on all chains. 

                                                                 
2 https://github.com/XMSS/xmss-reference
3 https://github.com/intel/tinycrypt 
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For a successful attack, we need to induce the fault in the hash chain lengths array after the hash chain 

length is calculated (line 9). Otherwise, the injected fault would be overwritten by the software. The fault 

must also be injected before the hash operations for the first check sum is calculated within the 49th 

iteration of the for loop in line 11 to 17 (also see Table 3-1). This means that we have to inject the fault within 

the first 48 iterations of this for loop. 

The lengths array resides in SRAM, more precisely on the stack. The stack usually resides at the end of the 

memory and grows from high to low addresses. Before we search for the exact position on the chip to inject 

the fault we need to determine the memory address. The lengths array is located at address 0x2000f150. 

Since we need to modify the 49th element of the array, the memory location we need to target is 

0x2000f210. Note that the size of every element in the array is 32 bit.. 

Together with the information of the device analysis in Section 3.2 we have everything at hand to perform a 

scan on the SRAM to find the location where we need to inject the fault to bypass the verification operation. 

From the device analysis we know that the stack resides in the second (lower) SRAM block. The last memory 

addresses are located at the bottom right corner of the memory block. 

In Figure 3.4 (b), a detailed view of this memory location is depicted. In this area we perform a grid scan to 

search the position of the address 0x2000f210. In order to reduce the search space, we use a pulse width of 

1600 ns. This value has proven to be a good parameter choice during the previous device analysis. 

Additionally to the spatial location, we sweep the pulse intensity as well as the focus using the Optispot 

technology of the Alphanov D-LMS for the parameter search. The grid scan is performed with a 20x optical 

zoom. 

Figure 3.4: Backside IR die shot of both SRAM blocks (a) and a detailed view (b) into the red rectangle. 

Listing 3-1: Source code of the XMSS reference implementation to calculate the public key from a signature 
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Trigger Preparation. Now that we determined the location in the SRAM, we need to setup a trigger to inject 

the fault at the right point in time. For our scenario, the right point in time is after the hash chain lengths 

are calculated and before the hash operations of the 49th hash chain are executed. 

In order to identify the right point in time to inject the fault, we modify the wots_pk_from_sig() function 

such that a general purpose input/output (GPIO) is set and reset before and after the gen_chain() function is 

called. With that we can determine the point in time of each hash chain calculation relative to the beginning 

of the firmware execution. Additionally, we perform an electromagnetic (EM) side-channel analysis (SCA) in 

order to identify potential patterns in the EM signal that we can use as trigger. For the side-channel analysis 

(SCA), we place a Langer RF-U 2,5-2 near field probe on the shunt resistor (R1) on the target board (Figure 

3.1). 

In Figure 3.5, the EM signal (top) and the timing of the GPIO signal (bottom) is depicted. From the EM signal, 

we can see that there is no suitable pattern that can be used as a trigger signal. The peaks in the signal do not 

correlate with the hash chain operations nor the GPIO signal. We placed the EM probe also on other 

locations such as on the capacitors of the digital power domain C5 to C8 but without obtaining a suitable 

signal that can be used as trigger. We assume that the strong peaks stem from the integrated power 

regulator of the STM32F4. 

Since we are not able to obtain a suitable trigger from the EM signal, we need a different trigger source. 

From the bottom plot in Figure 3.5 we can see that the hash operations take multiple seconds. For that 

reason, we decide to use the start of the firmware execution as initial trigger for the fault injection. The 

distance between two ticks shows the duration of a hash chain operation. The dark gray area represents the 

hash chain operations where a fault is effective whereas the light gray area represents the hash chain 

operations where a fault attack is not effective. 

From the plot one can see that a fault can be injected for more than 2.5 seconds after the firmware execution 

starts. After about 2.7 seconds, an injected fault has no effect anymore because the hash operations for the 

49th hash chain is already processed. Note that we need at least a short delay of about 10 milliseconds 

relative to the start of the firmware until the gen_chain() function is executed. 

Figure 3.5: : Timing of the hash chain during computation. In the top the EM signal over time is depicted, showing no 

correlation with the GPIO signal depicted in the bottom. Within the dark area in the bottom graph, the initial hash 

chains are evaluated, whereas in the light area the checksum hash chains are evaluated. 
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Results. Different delays were evaluated based on a trigger using the start of the firmware execution. In 

order to evaluate the success rate, for each delay ranging between 0.0 s up to 2.5 s in steps of 0.5 s, 32 

repeated measurements were performed. For delays within the above mentioned time frame (positive delay, 

smaller than 2.5 s), success rates between 50% and 80% were achieved. 

For the two evaluations outside this time frame, a success rate of zero was reported. During these 

experiments the laser parameters were kept fixed to the most promising settings evaluated in the prior tests, 

see Table 3-2. 

Note however, that any success rate larger than zero would allow an attacker to breach security. As in the 

secure boot use case, a practicable infinite amount of reboots and thus repeated attack tries are possible. 

Table 3-2: AlphaNov settings for success rate evaluation. 

Parameter Value

Optical zoom 20x 

Pulse width 1600 ns 

Peak current 9.0% (max. 4000 mA) 

Optispot 50 
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4 Conclusion 

In this report, we experimentally evaluated a fault attack on the WOTS scheme published in [16] in the 

context of PQC. Note, that the attack can target both the verification as well as the signing operation of 

different HBS schemes. In this report the XMSS signature verification process was targeted using LFI in a 

secure boot setting. 

Within the laboratory evaluation, two targets were tested, out of which a suitable target was selected and 

analyzed. The location and address-structure of the SRAM was identified. This allowed in a further step to 

map the word-placement to the targeted address in memory. 

Attacking the verification step required the generation of a forged signature, which looks benign up to a 

single bit-flip in a single hash chain. In this report, a forged signature with a single forced bit was used, 

requiring the LFI attack to set a specific single bit. 

Timing of the introduction of the fault was of minor concern within this setting, as the targeted hash chain 

allowed for a possible time-frame of a few seconds. This further reduced the requirements of a precise 

trigger signal, which was hard to obtain in the experimental setup. 

We showed, that only minor timing constraints are necessary in order to achieve a successful breach of 

security. This is of specific interested in real-world application, where finding a suitable trigger signal shows 

a significant role in the experimental setup. The results of this report further highlight the necessity of 

single bit-faults for these kind of attacks, which require a specific attacker skill-set. Within this report, the 

selected target proved to be susceptible to these kind of faults. 

In [16] also generic attacks containing invalid signatures were analyzed. These offer an alternative to 

circumvent signature verification in the considered use case. The difficulty of these attacks was considered 

of similar level. However, not all analyzed implementations were susceptible to the general attacks. For 

example, the XMSS reference implementation is only vulnerable to the WOTS-specific attack but not to the 

general. It should be possible to design mitigations for both types of attack, with the WOTS-specific attacks 

requiring knowledge of the underlying signature schemes. 

As a possible countermeasure to this attack, [16] discusses the possibility of repeated calculation and 

comparison of the hash chain length. This way, a tampering of the hash chain length can be detected. From 

a performance perspective, this countermeasure only introduces a negligible overhead compared to the 

total cost of hash computations. 
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5 Appendices 

5.1 Source Code 

5.2 STM32L4: Influence of Remaining Substrate Thickness (RST) 

By thinning of the chip, we were able to analyze the influence of the RST. In Figure 5.1 the original un-

thinned chip was measured, in Figure 5.2 the chip with an RST of 60µm and in Figure 5.3 with 30µm RST. 

We were not able to introduce single bit faults in the region of interest. 

Listing 5-1: Source Source code of the firmware to verify the XMSS signature. 
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Figure 5.1: Heatmaps for the number of faults on the un-thinned STM32L4 with different peak currents. 

Figure 5.2: Heatmaps for the number of faults on the STM32L4 with 60μm RST with different peak currents. We did 

not observe any significant change to the un-thinned version. 
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Figure 5.3: Heatmaps for the number of faults on the STM32L4 with 30μm RST with different peak currents. The 

number of faults was reduced, but no single bit faults were introduced. 
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