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Executive Summary 

Building reliable artificial intelligence (AI) systems requires systematic methods for assessing their qual-
ity to gain confidence in their correctness and identify deficiencies that AI teams must address. The 
purpose of this report is to evaluate how state-of-the-art techniques for testing neural networks can 
be used to assess neural networks, identify their failure modes, and gain insights on how to improve 
them. The work was conducted by LatticeFlow and was commissioned by Germany’s federal office for 
information security. 

In our study, we consider two neural networks that classify images of traffic signs into their correspond-
ing classes (e.g., stop, priority, etc.). We use the LatticeFlow platform to assess whether the neural 
networks reliably recognize traffic signs under different environments that arise in practice. Concretely, 
we test the two neural networks against common environmental conditions supported by LatticeFlow, 
such as changes to the lighting, and custom ones specific to the domain of traffic signs, such as placing 
stickers on the sign surface. We report on our key insights gained in the process and how they can be 
used to improve the neural networks: 

1. Neural networks can be reliable for some environmental conditions. We can specify important 
environmental conditions formally and systematically test the neural networks against them. The 
evaluated neural networks are reliable against some basic conditions, such as camera rotation. 

2. At the same time, neural networks are unreliable for others. The neural networks can be unreli-
able against some basic conditions, such as image scaling and brightness changes. These identify 
possible problems with the neural networks and suggest where the effort needs to be spent on 
improving them in the future. 

3. It is critical to test against domain-specific environmental conditions. The neural networks are 
highly unreliable against domain-specific conditions, such as placing traffic sign stickers. It is, there-
fore, important to define and consider these both during testing and training. 

4. Testing against combinations of environmental conditions is necessary. Multiple environmental 
conditions can occur simultaneously, such as image scaling and blurring, and this may lead to addi-
tional failures not uncovered when testing the networks against these individually. Concretely, the 
failure rate of the neural networks doubles when considering the combination of these conditions. 

5. Test results can help elicit important failure modes. The test process reveals inputs for which 
the neural networks’ predictions are brittle. Clustering these inputs helps pinpoint important failure 
modes, such as traffic signs exposed to direct sunlight or traffic signs obstructed by objects. 

Finally, we note that while our study focuses on testing traffic sign classifiers, the presented concepts 
and findings are general and can be used to test neural networks trained on different datasets (such as 
medical datasets) and other computer vision tasks (such as object detection and segmentation). 
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Zusammenfassung 

Die Entwicklung zuverlässiger Systeme auf Basis künstlicher Intelligenz (KI) erfordert systematische 
Methoden zur Bewertung ihrer Qualität, um Vertrauen in ihre Korrektheit zu gewinnen und Mängel zu 
identifizieren, die behoben werden müssen. Dieser Bericht hat zum Ziel, zu evaluieren, wie aktuell ver-
fügbare, den Stand der Technik widerspiegelnde Methoden zum Testen neuronaler Netzwerke genutzt 
werden können, um diese zu bewerten, ihre Schadensmodi zu identifizieren sowie Verbesserungs-
möglichkeiten zu erkennen. Diese Arbeit wurde von der Firma LatticeFlow durchgeführt und vom Bun-
desamt für Sicherheit in der Informationstechnik (BSI) beauftragt. 

Die Studie betrachtet zwei neuronale Netze, die Bilder von Verkehrsschildern klassifizieren (z. B. Stopp-
schild, Vorfahrtschild etc.). Die Studie nutzt die Plattform von LatticeFlow, um zu beurteilen, ob die 
neuronalen Netze Verkehrsschilder in verschiedenen Umgebungen, die in der Praxis auftreten, zuver-
lässig erkennen. Konkret testen wir die beiden neuronalen Netze gegenüber allgemeinen Umgebungs-
bedingungen, die von LatticeFlow unterstützt werden, wie Änderungen der Lichtverhältnisse, sowie 
gegenüber Veränderungen, die für den Bereich der Verkehrsschilder spezifisch sind, wie das Aufkleben 
von Stickern auf die Schilder. Dabei wurden die folgenden Erkenntnisse gewonnen: 

1. Neuronale Netze können unter einigen Umgebungsbedingungen zuverlässig funktionieren. 
Wichtige Umgebungsbedingungen können formal spezifiziert und die Netze systematisch dage-
gen getestet werden. Die untersuchten neuronalen Netze funktionieren zuverlässig unter einigen 
grundlegenden Bedingungen, wie einer Rotation der Kamera. 

2. Gleichzeitig sind neuronale Netze unter anderen Bedingungen unzuverlässig. Die neuronalen 
Netze können unter einigen grundlegenden Bedingungen, wie Skalierung und Änderung der Hel-
ligkeit, unzuverlässig sein. Hierdurch lassen sich mögliche Probleme der neuronalen Netze identi-
fizieren und Erkenntnisse gewinnen, an welcher Stelle zukünftige Anstrengungen nötig sind, um sie 
zu verbessern. 

3. Es ist entscheidend, Tests unter anwendungsspezifischen Umgebungsbedingungen durch-
zuführen. Die neuronalen Netze weisen unter anwendungsspezifischen Bedingungen, wie dem 
Aufkleben von Stickern auf die Schilder, eine hohe Unzuverlässigkeit auf. Es ist daher wichtig, diese 
sowohl während des Testens als auch während des Trainings zu definieren und zu berücksichtigen. 

4. Es ist notwendig, Tests unter Kombinationen von Umgebungsbedingungen durchzuführen. 
Mehrere Umgebungsbedingungen, wie Skalierung und Unschärfe, können gleichzeitig auftreten. 
Dies kann zu zusätzlichen Fehlern führen, die nicht erkannt werden, wenn die Netze einzeln unter 
diesen Bedingungen getestet werden. In einem konkreten Beispiel verdoppelt sich die Fehlerrate der 
Netze, wenn eine Kombination dieser beiden Bedingungen (Skalierung und Unschärfe) betrachtet 
wird. 

5. Die Testergebnisse können genutzt werden, um wichtige Schadensmodi zu eruieren. Der Testvor-
gang zeigt auf, für welche Eingaben die Vorhersagen der neuronalen Netze wenig robust sind. 
Wenn diese Eingaben zu Clustern angeordnet werden, können damit wichtige Schadensmodi, wie 
direkte Sonneneinstrahlung oder die Verdeckung der Verkehrsschilder durch andere Objekte, bes-
timmt werden. 

Abschließend ist festzustellen, dass der Fokus dieser Studie zwar auf dem Testen von Netzen zur 
Verkehrsschildklassifizierung liegt, die vorgestellten Konzepte und Erkenntnisse jedoch allgemeiner Natur 
sind und zum Testen von neuronalen Netzen verwendet werden können, die auf andersartigen Daten-
sätzen (wie medizinischen Datensätzen) oder für andere Aufgaben in der Bilderkennung (wie die Ob-
jekterkennung und die Segmentierung) trainiert wurden. 
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1 Introduction 

Over the last few years, deep neural networks have been established as the state-of-the-art technology 
for building visual perception systems. In turn, they have become the core building block for developing 
systems for disease prediction [9, 4, 10], fault detection [8], quality inspection [6], autonomous driv-
ing [11, 3, 12] and many others. One of the main tasks and challenges in deploying such practical 
artificial intelligence systems is building reliable deep neural networks, i.e., models that achieve high 
accuracy and work reliably under a diverse set of environments that may occur in practice. 

An essential prerequisite to building reliable neural networks is the ability to thoroughly assess the 
trained model’s quality and systematically identify any failure modes, i.e., conditions that cause the 
model to fail. Without this, it is impossible to gain confidence in the model’s quality and understand 
how to improve it. To illustrate, consider building a model that classifies images of traffic signs into 
their corresponding classes (stop, priority, etc.). It is evident that, to operate reliably, the model must 
classify traffic signs correctly under different lighting environments, camera angles, and so forth, which 
naturally occur in the target environment. Moreover, suppose that the model is prone to systematic 
failures in scenarios where the traffic sign is partially occluded by objects, such as tree branches. It is 
then imperative to find these failure modes and improve the model based on this knowledge, e.g., by 
suitably enhancing the training dataset. 

Unfortunately, the current practice of training and testing neural networks does not facilitate finding 
common failure modes of the trained model. After a model has been trained, one typically evaluates 
its quality by measuring its accuracy, i.e., the fraction of correctly predicted test inputs. However, this 
metric does not provide any assurance that the model works reliably under certain conditions (e.g., 
camera noise), nor does it bring any insights into what causes the model to fail. To cope with this, 
currently, machine learning teams tend to manually inspect the model’s behavior on different test inputs 
to identify deficiencies and understand how to enhance it. Instead, as the data and the environment are 
continuously changing, it is crucial that such failure modes are identified automatically by the system 
and integrated directly into the development process early on. 

Objectives The objective of this project is to demonstrate how state-of-the-art robustness testing 
techniques can be used to: 

1. Assess the robustness of the neural network with respect to important conditions that may occur in 
practice (rotations, brightness changes, etc.); 

2. Uncover important failure modes of the neural network, such as common types of inputs that cause 
the neural network to mispredict; 

3. Make informed decisions in the design process by comparing the performance of different neural 
network architectures; 

4. Understand how to improve the neural network by enhancing the quality of the training dataset 
based on identified failure modes. 

The results aim to highlight the benefits and limitations of robustness testing techniques in the quality 
assurance process of neural networks. 

Reliability assessment of traffic sign classifiers As concrete test targets for our experiments, we 
consider two neural networks that classify traffic signs. Both networks have been selected and pro-
vided by the BSI. We show the key steps of the reliability assessment in Figure 1. The input to the 
testing process consists of the trained neural network and the test dataset. Also, the testing platform is 
configured with robustness properties, which capture a diverse set of conditions that may occur either 
naturally or adversarially in the target environment. Importantly, these properties enable the testing 
platform to check how well the network handles important cases, such as changing the input image’s 
orientation, adjusting colors, placing stickers, etc. In practice, the properties are derived from the func-
tional requirements of the target system. 
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Figure 1: Reliability assessment of neural networks. The testing platform takes as input a neural network and its 
test dataset, along with robustness properties that capture important environmental conditions (camera position, 
sign stickers, etc.), and assesses the neural network against these together with its common failure modes. 

Based on the inputs, we use LatticeFlow1, a state-of-the-art platform for testing neural networks, to 
automatically assess the neural network’s behavior and identify failures. Concretely, the platform re-
ports the neural network’s robustness to the different scenarios captured by the robustness properties. 
Based on these results, we also demonstrate how one can pinpoint common failure modes. For exam-
ple, we show how one can discover specific (combinations of) transformations that cause the network 
to misbehave. Further, we show how to find test inputs for which the model is highly uncertain (relative 
to the properties). This information is essential to understand how to enhance the dataset and define 
additional custom properties, which improve both the neural network and the testing process. 

We note that while the report focuses on the task of classifying traffic signs, the presented concepts 
are general and can be used to test neural networks trained on different datasets (e.g., medical images) 
and other computer vision tasks (e.g., object detection, segmentation). 

Roadmap The rest of the report is organized as follows. In Section 2, we provide details on the 
datasets and neural networks used in our experiments. In Section 3, we describe the key steps of our 
robustness assessment experiments, and in Section 4, we highlight our results. Finally, in Section 5, 
we draw conclusions. All technical details, including the formalization of the considered robustness 
properties and detailed experimental results, are provided in the extended version of the report [13]. 

1For more information, visit https://latticeflow.ai. 
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2 Case Study: Traffic Sign Classifiers 

We now present details about our case study on the reliability assessment of traffic sign classifiers. 

Inputs To perform the assessment, we use two inputs: 

• Test Dataset consisting of images with the corresponding ground-truth labels. 

• Trained Models that perform a given task, in our case classification of traffic signs. 

We note that while we focus on a given task, our methodology is general and independent of the actual 
task. It is parameterized only by the trained models, test dataset, and robustness specification (dis-
cussed in Sections 4.1 and 4.2). In particular, the robustness analysis considered in our case study can 
be applied to computer vision models trained on different datasets (e.g., medical imaging) and models 
that implement various tasks (e.g., object detection or segmentation). 

2.1 Dataset: German Traffic Signs (GTSRB) 

As our main dataset, we use the test partition of the German Traffic Sign Recognition Benchmark 
dataset [22] (GTSRB). This dataset consists of 12, 630 color images of German road signs, classified 
into 43 classes. The dataset images have different resolutions, with height and width ranging between 
25 ´ 266 and 25 ´ 232 pixels, respectively. In Figure 2, we show one example image for each of the 43 
traffic sign classes present in the dataset. This dataset was chosen by the BSI. 

Additionally, we test the models using the DFG traffic sign dataset [28], which consists of 200 traffic 
sign categories collected in Slovenia. We manually created a mapping to the classes that are also rep-
resented in the GTSRB dataset and removed the rest (we provide full details of the preprocessing used 
in [13], Appendix E). 

Figure 2: Example traffic signs drawn from the GTSRB dataset [22]. We show one example from each of the 43 
traffic sign classes. 

2.2 Trained models 

We test two neural networks prepared and supplied by the BSI team: 

1. The first neural network, called pre-trained, has 99.0% accuracy. It uses the pre-trained Inception-
v3 model [27], which is trained on the ImageNet dataset [17] and fine-tuned for the GTSRB dataset. 

2. The second one, called self-trained, has 97.4% accuracy. It uses an architecture based on Inception-
v3 but with reduced size and without pre-training. 

Both networks were trained with a data augmentation policy that applies the following random trans-
formations: scaling using a factor between 0.6 and 1.0, rotation by an angle within 15 degrees, color 
changes – brightness, contrast, saturation, and hue – by a factor of up to 0.1, and random change to 
a grayscale format. The transformed images are then scaled to the neural network’s expected resolution 
– 32 ˆ 32 pixels for the self-trained network and 299 ˆ 299 for the pre-trained network. 
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Figure 3: High-level steps of the testing process. First, we test the model against a set of basic robustness proper-
ties and their combinations. Based on the results, we elicit stronger properties (e.g., adaptively changing brightness 
for different parts of the image) and task-specific properties, such as adding stickers. Next, the results are analyzed 
to provide insights by identifying common failure modes. The failure modes are then used to iteratively improve 
both the model, the dataset as well as to elicit new robustness properties. 

3 Reliability Assessment Overview 

We now describe the high-level steps of our testing approach (depicted in Figure 3). 

3.1 Test the neural network 

First, we test the neural network against generic robustness properties (see the left box in Figure 3). The 
generic robustness properties apply to a wide range of computer vision models, and include different 
types of geometric transformations (e.g., rotation, scaling, perspective), change to image colors (e.g., 
adjust hue, contrast, brightness), natural noise (e.g., sensor failures), perturbations to individual image 
pixels, and others. Formally, each robustness property transforms an existing image into a new image 
according to the property (e.g., rotation turns the image by a given degree). To preserve the original 
image label, all transformations have bounds, which define the maximum amount of transformation 
applied to the original image (such as the maximum degree for rotation). 

Robustness score We test the neural network against the individual robustness properties, and re-
port each property’s robustness score. The robustness score is defined as the fraction of robust samples 
in the dataset. We say that a sample is robust to a given property if the network produces the correct 
label for all transformations captured by the property. For example, suppose the model achieves 86.5% 
robustness with respect to the property stating that the model must be robust to 15 degree rotations. 
This indicates that for 13.5% of the samples, we found a rotation of the original image within 15 de-
grees which causes the model to predict the wrong label. We note that finding such failure inputs is 
challenging due to the extremely large space of possible transformations captured by each robustness 
property. Further, we note that robustness is defined only over samples for which the model already 
predicts the correct label as all incorrect samples are trivially non-robust. 

Testing robustness property combinations In addition to testing the neural network against individ-
ual robustness properties, we also consider combinations of robustness properties, such as rotations 
followed by adding noise. Testing such combinations is important because even if the network is robust 
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to the individual robustness properties, it may break for their combination. Our experiments, presented 
in Section 4.3, show that combining properties can indeed result in significantly more failures. 

3.2 Elicit stronger and task-specific robustness properties 

Having tested the network against generic robustness properties, we define additional properties that 
cover more advanced and task-specific robustness properties as a next step. 

Stronger task-agnostic properties While the generic robustness properties are useful to discover 
common model failures, they are not powerful enough to model many real-world scenarios. For exam-
ple, the basic brightness property uniformly changes the brightness of the entire image. To refine it, we 
define adaptive brightness, which applies local brightness changes to the image (see Figure 3). Note 
that, compared to basic brightness, adaptive brightness models strictly more failures. We present such 
stronger robustness properties in Section 4.2.1. 

Task-specific robustness properties In addition, to strengthening the basic generic properties, we 
also define custom, task-specific robustness properties, which target specific computer vision tasks, 
such as processing traffic signs or MRI scans. For example, because people often place stickers on 
traffic signs, we explicitly define a “traffic sign stickers” property, which enables us to test the robustness 
of traffic sign classifiers against sign stickers. To derive such custom properties, we inspect common 
failures over the dataset, indicating difficult-to-learn scenarios, and define properties that model these 
cases. We discuss additional robustness properties specific to traffic sign classifiers in Section 4.2.2. 

3.3 Assess test results and gain insights 

The last step of the testing process is to assess the test results and gain insights into the model’s failure 
modes. Concretely, we inspect breakdowns of the test results across (i) the parameter space of the 
robustness properties and (ii) the test inputs. Both breakdowns are essential to observe patterns of 
systematic failures across different types of transformations and inputs. 

Robustness across the parameter space Recall that each robustness property has parameters (such 
as the angle of rotation). The robustness score (defined in Section 3.1) aggregates the failures across 
all robustness parameters and hides how many parameters, and which ones, result in failures. To gain 
deeper insights into the failure modes, we plot the robustness across the parameter space, i.e., where 
the x axis is the parameter space (see top right of Figure 3). These plots are helpful to: 

1. Pinpoint failure regions. For example, suppose the robustness score for rotation and brightness is 
low, indicating that the model is brittle for this combination of transformations. The breakdown may 
reveal the particular failure region, such as: “rotations by 2 ´ 4 degrees and brightness increase by 
5 ´ 10% often result in failures”. 

2. Compare different models. For example, in Figure 3 we plot the robustness landscape of two mod-
els A and B. While both models are not robust to the considered robustness property, by considering 
the robustness landscape, we can see that model A is, in fact, significantly more robust than model 
B, because the latter fails for most values of the parameter space. 

Find failure modes The second important breakdown is to plot the model’s robustness across the 
test inputs. This helps identify inputs where the model is brittle and uncertain (i.e., inputs for which 
most robustness transformations result in a failure). For example, in Figure 3, we show three test inputs 
for which the model is brittle. These inputs suggest that the model is uncertain when classifying the 
priority road sign in conditions where the background is similar, when there is direct sunlight at the 
traffic sign, and when the sign is occluded by an object (such as a tree branch). 

Finally, we note that finding failure modes is essential for training an accurate and robust models. Tech-
nically, this is often achieved by producing better datasets and eliciting additional robustness properties, 
both guided by the knowledge of failure modes. We discuss this point further in Section 4.6. 
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4 Main Results 

In this section, we describe the main results of our study. To simplify the presentation, we structure our 
sections along four main dimensions: 

• Properties (§4.1-§4.2) -we start by testing the models against basic generic robustness properties. 
Then, we refine these into stronger properties and design task-specific properties tailored to traffic 
sign classifiers. 

• Dependence (§4.3) - we start by considering the robustness properties individually. Then, we 
demonstrate that it is critical to consider the properties jointly. 

• Metric (§4.4-§4.5) - we begin by reporting a robustness score (a single number). Then, we show 
the benefits of reporting the robustness landscape (a plot). 

• Dataset (§4.6) - initially, we use the original test dataset for our robustness analysis. Then, we 
design new synthetic datasets based on the failure modes discovered using our robustness analysis. 

4.1 Testing against basic robustness properties 

DATASET PROPERTIES DEPENDENCE METRIC 

Fixed + Basic + Independent + Number 

As the first step, we test the network against a set of generic robustness properties applicable to a wide 
range of tasks that take images as inputs. These include properties that model natural image noise, per-
turb individual image pixels, perform geometric transformations, change the image colors, and general 
transformations such as image compression. If any of these properties is non-robust, it is a sign that a 
model deficiency has been found. However, as we will see later, such analysis is insufficient and care 
has to be taken when interpreting the results – high robustness of the model to a basic property checked 
in isolation (i.e., independently of other properties) does not mean the model is robust to combinations 
of multiple basic properties. 

Given the large number of properties, and to avoid clutter, in what follows, we give an overview of 
the robustness for selected properties from each category. Further, note that we report adversarial 
robustness, which empirically checks whether the input image is robust to all transformations defined 
by the property (e.g., all image rotations). We provide the full results, including the formal specification 
of each property, in the extended version of this report [13]. 

Image noise As cameras are physical devices, there are many sources of noise that affect the resulting 
digital image, as illustrated in Table 1. Noise can occur naturally, such as Gaussian noise, which arises 
during image acquisition (e.g., due to poor illumination, high sensor temperature, or electronic circuit 
noise), it can be induced by sensors (e.g., photon-counting noise and speckle [20, 23]), it can be caused 
by the signal transmission (e.g., due to faulty switching, atmospheric disturbances), or arise as a result 
from various processing steps (e.g., due to analog-to-digital converters or quantization) [14]. 

Depending on the setting, we select a suitable noise model that accurately reproduces the spatial char-
acteristics of the real-world noise source [15]. Then, we assess whether the neural network is robust 
to the specified type and amount of noise. As a concrete example, we illustrate the robustness of the 
two models to Gaussian noise in Figure 4. We see that both models are partially non-robust – the 
self-trained and the pre-trained models predict the wrong traffic sign for 4.5% and 1.2% of the images, 
respectively. 
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Table 1: Examples of common noise sources for images, their corresponding noise model, visualization of the 
resulting noise, and the probability density distribution associated with the noise model. 

SELF-TRAINED PRE-TRAINED 

95.5% 98.8% 

Gaussian Noise Robustness 

INPUT MORE NOISE Ñ 

Figure 4: Robustness to Gaussian noise (generated with µ = 0, σ = 1) together with an illustration of the noise 
applied to the input image. While the amount of noise added is imperceivable for humans, it is enough to cause 
the models to misclassify a significant amount of the samples. 

Pixel perturbations For pixel perturbations, the robustness property is defined over individual pix-
els, each of which is allowed to be changed independently of other pixels. The only constraint is that 
the overall change to the image is below a specified threshold. Below we illustrate robustness in two 
settings that differ in how the allowed change to the original image is measured. 

First, we allow modifying a fixed number of pixels by any amount, while the remaining pixels remain 
the same (referred to as L0-norm). Note that even though both L0-norm and Impulse noise define 
the same set of perturbations that can be applied to the image, pixel perturbations explore this space 
more effectively to find non-robust samples. In contrast, Impulse noise samples from the corresponding 
noise distribution. This difference can also be seen in the examples shown in Figure 5, which illustrates 
that, in some cases, it is enough to change a single pixel to break the model. When allowing changes 
of up to 32 pixels, the self-trained model robustness is only 56.9%. This is partially because the self-
trained model’s resolution is quite low at only 32 ˆ 32 pixels. The robustness of the pre-trained model 
is significantly better, even when we allow changes for up to 128 pixels. However, given that the pre-
trained model uses a much higher resolution of 299 ˆ 299, the results are not directly comparable. We 
provide a thorough evaluation and description of how to make the results comparable between different 
models in our full report [13] (Appendix D). 

SELF-TRAINED PRE-TRAINED INPUT HIGHER NUMBER OF PERTURBED PIXELS Ñ 

Figure 5: Robustness to pixel L0 perturbations and visualizations of the non-robust images. Here, the number of 

Pixel L0 Robustness 

61.3% 96.8% 

perturbed pixels shown is 1, 8, 16 and 32. 

As our second example, we allow all pixels to change, but by less than a specified threshold ϵ (referred 
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to as L8-norm). The overview of the robustness in Figure 6 shows that both the self-trained and pre-
trained models are highly non-robust. Here, the robustness of the pre-trained model is essentially zero, 
meaning that almost no images are classified correctly. This is even though the perturbation is still 
almost non-perceivable to humans. 

SELF-TRAINED PRE-TRAINED 

53.5% 2.1% 

Pixel L8 Robustness 

INPUT HIGHER MAXIMUM CHANGE TO EACH PIXEL Ñ 

Figure 6: Robustness to L8 pixel perturbations with ϵ ď 0.01. 

Geometric transformations The next set of robustness properties capture geometric transformations 
of the input image. The geometric transformations used are illustrated below and capture generic trans-
formations that occur naturally in practice. 

ROTATION TRANSLATION SCALING SHEARING BLURING SHARPENING FLIPPING PERSPECTIVE 

For example, the scaling property corresponds to moving closer (or further away) from the traffic sign, 
and blurring captures the fact that the camera is typically moving. Rotation, translation, shearing, and 
perspective all encode different variations of the same image. We illustrate the robustness of two ge-
ometric properties (rotation and scaling) next and include the full results in [13] (Appendix B). 

For rotation, both the self-trained and pre-trained models are relatively robust, containing only 2.4% 
and 0.5% non-robust samples, respectively. However, note that even such relatively high robustness 
still causes the error rate of both models to double. For scaling, the robustness is significantly worse, 
with 11.0% and 3.1% samples being misclassified, respectively. To understand the reasons behind the 
worse robustness of the scaling property (as well as other properties), we provide additional analysis 
in Section 4.5. 

Rotation Robustness 

97.6% 99.5% 
SELF-TRAINED PRE-TRAINED 

Scaling Robustness 

89.0% 96.9% 
SELF-TRAINED PRE-TRAINED 

Ð NEGATIVE ROTATION POSITIVE ROTATION Ñ 

Ð SMALLER SCALE LARGER SCALE Ñ 

Figure 7: Overview of the robustness to rotation and scaling transformations. For rotation, the images were rotated 
by angles between ´15 and 15 degrees. For scaling, we resized the images with a factor between 0.8 to 1.1 of the 
original size. 

Color transformations As the name suggests, color transformations affect the image colors while 
keeping the other properties (e.g., rotation, perspective, noise) unchanged. The color properties are use-
ful since, if they are strong enough, they allow modeling different environmental conditions under which 
the image was taken (e.g., amount of natural lighting) and differences between color post-processing 
performed on the image (either automatically by the camera or manually). The list of generic color prop-
erties evaluated in this work is shown below. We illustrate color robustness for two selected properties 
– brightness and hue – in Figure 9. 
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BRIGHTNESS CONSTRAST SATURATION HUE GRAYSCALE COLOR DEPTH 

8bit

Figure 8: List of basic color properties evaluated in this work. 

SELF-TRAINED PRE-TRAINED 

94.9% 96.7% 

Brightness Robustness 

Ð LOWER BRIGHTNESS HIGHER BRIGHTNESS Ñ 

SELF-TRAINED PRE-TRAINED 

99.6% 99.9% 

Hue Robustness 

Ð LOWER HUE HIGHER HUE Ñ 

Figure 9: Robustness overview to brightness and hue changes. For both properties, the allowed change was in 
the range ´0.1 to 0.1 of the original property value. 

The results show the robustness to hue is exceptionally high, and less than 0.4% of samples are non-
robust for both models. However, at the same time, both models are significantly less robust to bright-
ness changes. Similarly to the geometric transformations, even though the robustness might appear 
quite high, the results show a higher misclassification rate than the model accuracy on the original test 
dataset. Concretely, for the brightness transformations, the error rates are 2ˆ and 4ˆ higher for the 
self-trained and pre-trained models, respectively. 

General transformations The last set of robustness properties encode general image transforma-
tions. As an example in this category, we evaluate robustness to image compression, as shown in 
Figure 10. The robustness of both models is very high, with the self-trained model having 98.4% ro-
bustness and pre-trained model 98.7% robustness. Note that this is even though for the pre-trained 
model the compression level was set to very high. For the self-trained model, we used smaller com-
pression levels as otherwise the compression artifacts dominate the image. 

SELF-TRAINED PRE-TRAINED 

98.4% 98.7% 

Compression Robustness 

INPUT HIGHER COMPRESSION Ñ 

Figure 10: Robustness to using JPEG compression. For pre-trained model the images have resolution 299 ˆ 299 
and compression quality was set between 90 to 20. For self-trained model, the images are smaller with resolution 
only 32 ˆ 32 and therefore we used higher compression quality from 90 to 80. 

Summary In this section, we presented an overview of the basic assessment of two neural networks 
trained for the task of traffic sign classification. We have seen that while there are some properties 
for which the models are relatively robust (e.g., rotation, hue, compression), there are others where the 
models’ robustness is significantly lower (e.g., scaling, brightness, pixel L8 perturbations). This is even 
though the set of perturbations were selected such that the transformed images are for many properties 
almost indistinguishable from the original image by humans. However, the results also show that if 
robustness is taken into account, it can be significantly improved (e.g., by suitable training or architecture 
selection). In particular, for properties that were included in the training (e.g., hue, brightness, rotation, 
translation), the robustness is relatively high. Further, there is also a notable difference between the 
two evaluated models, with a pre-trained model achieving higher robustness for all but one robustness 
property (while also achieving higher standard accuracy). 
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4.2 Eliciting stronger and task-specific properties 

Property Type Basic Complex Task Specific 

So far, we assessed the model using a set of basic robustness properties. While these are useful to 
discover issues, they are insufficient to assess the model against more advanced scenarios that occur in 
practice. To address this issue, we extend the robustness properties by developing stronger properties 
and task-specific properties tailored to traffic sign classification. This step is crucial for a more thorough 
assessment of the model. Indeed, our results show that the models have close to zero robustness 
against many of the stronger properties. 

4.2.1 Stronger robustness properties 

We illustrate two examples of stronger robustness properties – adaptive color transformations and 
recolor transformations. We selected color properties as for these, both the self-trained and pre-trained 
models achieved the highest robustness. 

Adaptive colors The adaptive color transformations change different parts of the image differently. 
This is in contrast to the basic color properties from Section 4.1 that apply the same transformation for 
the whole image. As a concrete example, consider the images shown in Figure 11, which illustrates 
the difference between basic and adaptive brightness. Here, δ is used to visualize the brightness mod-
ification, which for the basic brightness simply makes the whole image darker (i.e., δ is a solid gray 
color). In contrast, adaptive brightness makes fine-grained changes, allowing some parts of the image 
to be brighter, and others darker. As a result, the model robustness to such stronger property is signifi-
cantly lower – 37.4% for the self-trained model (from 94.9%) and 56.1% for the pre-trained model (from 
96.7%). Note that while adaptive colors allow different changes to different parts of the image, they are 
selected to encourage consistency. That is, changes applied to spatially close locations are optimized to 
be similar to each other. For a formal definition of this property and the optimization procedure, please 
refer to [13] (Appendix A). Further, we note that this property applies to other color properties beyond 
brightness, as shown in Figure 12. 

Brightness 

93.9% 96.6% 
SELF-TRAINED PRE-TRAINED 

Adaptive Brightness 

37.4% 56.1% 
SELF-TRAINED PRE-TRAINED 

x δ x + δ 

+ = 

x δ x + δ 

+ = 

basic brightness applies 
the same transformation 
to the whole image 

adaptive brightness 
allows different trans-
formations for different 
parts of the image 

Figure 11: Robustness comparison of the basic and adaptive brightness property. 

Hue Adaptive Hue 

+ = + = 

Figure 12: Illustration of the adaptive color applied to hue color property. 
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Recoloring The recoloring transformation [24] allows to change colors in the image directly, instead 
of changing the individual color properties (e.g., brightness, contrast, saturation, etc.). Given that the 
traffic sign’s colors are an important feature for traffic sign classification, we restrict color changes to 
nearby colors. Overall, the robustness to recolor transformation is very low and significantly worse than 
any of the basic color transformations from Section 4.1. Concretely, the robustness of the self-trained 
network is only 41.6%, while the robustness of the pre-trained network is even lower at 39.9%. 

4.2.2 Task-specific properties 

In addition to the generic image properties discussed so far, there are typically many properties that are 
specific for the given task at hand. Similar to the stronger robustness properties, we illustrate several 
task-specific robustness properties and show that the neural models can be highly non-robust to them. 
As a result, such task-specific properties must be part of the robustness evaluation. 

Traffic sign stickers A typical example of a robustness property specific for the task of traffic sign 
classification is robustness to stickers placed on the surface of the traffic sign. Note that this is a property 
that is already included in the GTSRB dataset, which contains samples that contain stickers, e.g.: 

We model this transformation by defining a robustness property that inserts a ”sticker” on the traffic 
signs. We model stickers as white rectangles of varying size, orientation, and position on the traffic sign. 

SELF-TRAINED PRE-TRAINED 

33.8% 27.2% 

Traffic Sign Stickers 

+ = 

inserts a single sticker 
of varying position, 
size and orientation 
on the traffic sign 

As the results show, the robustness of both the self-trained and the pre-trained models is extremely 
low. In fact, the models produce correct answers for only « 30% of the images. This is even though we 
use relatively simple approximations of real-world stickers, which can be extended to different shapes 
and textures. Further, these transformations also translate to the physical world, as shown by [18]. 

Additional properties for traffic signs Naturally, there are many other task-specific properties that 
we can define. In Figure 13, we list more properties relevant for traffic sign classification and frequently 
occur in practice. Defining transformations that capture these properties is useful both for assessing 
the network robustness and generating a synthetic dataset used for training. 

Bending Border Type Sun Reflection Occlusion 

Traffic Sign Type Graffiti Night Reflection 

Background Light Worn Materials Multiple Signs Shadows 
Figure 13: Real world examples of properties that are relevant for traffic sign classifiers. 
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4.3 Testing against multiple robustness properties 

Property Dependence Independent Combinations Ordering 

So far, the analysis performed in Sections 4.1 and 4.2 assumed that the robustness properties are 
independent and assessed the model to each property in isolation. However, the robustness properties 
can be composed together (e.g., combining brightness with rotation), effectively creating a new set 
of properties that should be assessed for robustness. The main technical difficulty in exploring the 
robustness properties jointly is that the resulting set is exponential in size. As a result, specialized 
techniques are required to explore this set efficiently (e.g., by identifying properties that are indeed 
dependent). In what follows, we illustrate the effect of considering the robustness properties jointly 
and include the full results in [13] (Appendix C). 

Combining robustness properties We summarize the effect of considering the robustness properties 
jointly in Figure 14. Here, each point denotes a concrete combination of two robustness properties and 
the effect on the robustness. As a concrete example, let us consider the highlighted configuration in 
Figure 14 (left), which corresponds to combining the properties translate and scale. When considered 
independently of each other, the robustness to translation is 94.7%, and the robustness to scaling is 
93.0%. However, when combined, the robustness decreases by additional 7.5% to 85.5%. We obtain 
similar results when evaluating the pre-trained model, as shown in Figure 14 (right). For both models, 
most property combinations decrease robustness. However, few combinations improve robustness 
(the points with positive robustness change in Figure 14). This result shows that combining all the 
properties together does not necessarily lead to a reliable model assessment. We note that this may 
be because the robustness assessment is phrased as an optimization problem, which becomes harder 
to solve when all the properties are combined. 

Translate: 94.7% Ð WORSE | BETTER Ñ Rotation: 96.1% Ð WORSE | BETTER Ñ 

−8.0% −6.0% −4.0% −2.0% 0.0% 2.0% −5.0% −4.0% −3.0% −2.0% −1.0% 0.0% 1.0% 2.0%
Robustness decrease of combined properties Robustness decrease of combined properties 

Scale: 93.0% 
Translate + Scale: 85.5% (-7.5%) 

Blur: 96.9% 
Rotation + Blur: 93.5% (-3.4%) 

SELF-TRAINED PRE-TRAINED 

Figure 14: Effect of assessing model against property combinations for self-trained (left) and pre-trained (right) 
models. Each point corresponds to the relative change in robustness of a selected properties combination compared 
to considering the properties independently. For most properties, their combination decreases the robustness 
(shown as negative change). 

Ordering robustness properties A natural question that arises when considering multiple properties 
is in which order they should be combined. While for some properties, the order leads to the same 
results (e.g., combining translation with brightness), for others, different orders lead to significantly 
different results. As a concrete example, consider combining scaling and blur property shown below: 

property order can signifi- Scale + Blur vs Blur + Scale 
cantly affect the robustness 81.4% 87.6%Robustness Robustness 

We can see that while the same two properties are used, the robustness of the pre-trained model (on 
the GTSRB dataset) to applying scaling first is almost twice as worse compared to applying scaling 
second. 
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4.4 Deeper insights by inspecting robustness plots 

Robustness Metric Number Landscape 

To evaluate model robustness, the typical practice is to report a single number that corresponds to the 
average per example robustness, as illustrated in Figure 15. 

robust robustness reported as a 
+ Translation = or Ñ 95.0% single number aggregated 

over the dataset samples non-robust 
INPUT ROBUSTNESS ROBUSTNESS AGGREGATED NumberPROPERTY OUTPUT OVER DATASET 

Figure 15: Assessing the model robustness by computing a single bit of information for each sample. 

Here, for a given robustness property (e.g., translation), we compute whether each sample in the dataset 
is robust or not. While useful as a high-level assessment of the model’s robustness, reporting a single 
bit of information for each image (robust/non-robust) is limiting for many reasons. First, it does not 
help understanding why the given sample is robust or non-robust (i.e., no explanation to support the 
decision is given). Second, it does not provide a measure of how confident the robustness assessment 
is. Finally, it does not allow fine-grained comparison between two samples (or models) that are both 
robust or non-robust. To address these limitations, instead of reporting a single number, we plot the 
robustness landscape, as shown in Figure 16. 

Translation + = 

−4 −2 0 2 4
0

2

4

translation offset 

ro
bu
st
ne
ss

non-robust 
region 

robustness reported 
as a region capturing 
model robustness in 
the parameter space 

Landscape 

Figure 16: Assessing the robustness using robustness landscape instead of a single number. 

Here, for a given robustness property, we plot the model robustness across the parameter space of the 
given robustness property. For the translation property, the parameter space corresponds to different 
offsets with which the image can be shifted. As can be seen, even though the input image is non-robust, 
such analysis provides the explanation why – it is non-robust due to a small region when shifting the 
image by +1 pixel to the right. We can also see that apart from this region, the image is, in fact, highly 
robust for all other values in the parameter space. 

Further, computing the robustness landscape also allows intuitive and more detailed comparison be-
tween multiple models (or samples) that are all robust (or non-robust). As a concrete example, consider 
three models shown in Figure 17 (the models A, B, C are only illustrative and do not correspond to the 
self-trained and pre-trained models). 

−4 −2 0 2 4
0

2

4

MODEL A 
−4 −2 0 2 4

0
1
2
3
4

MODEL B 
−4 −2 0 2 4

0

2

4

MODEL C 

all three models are 
non-robust, yet for 

very different reasons 

Figure 17: Comparing robustness landscapes of three hypothetical non-robust models. 

Even though all the models are non-robust, they are non-robust for different reasons. Model A is non-
robust due to a single model failure caused by shifting the image « 1 pixel to the right. In contrast, 
model B is robust only to a small region around the original image and non-robust everywhere else. 
This may indicate that the model was not trained with robustness in mind, or that it was trained to be 
robust but only to the smaller region (´1, 1). 
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4.5 Finding common failure modes 

Dataset Fixed Failure Modes Synthetic 

In Section 4.4, we illustrated how providing a robustness landscape instead of a single number can help 
understand where the model is non-robust. In this section, we discuss how to gain insights into why 
and for which types of samples the model is non-robust. Concretely, we are interested in discovering 
failure modes of the model, that is, to find non-robust regions of the input space. For example, a failure 
mode for classifying priority road traffic signs is that the model is non-robust when the sign is under 
strong direct sunlight or when it is occluded with a different object (both illustrated in Figure 18). Being 
able to compute and analyze such failure modes brings many benefits: 

• Design new robustness properties that capture transformations relevant to the failure modes. This 
is a data-guided approach to designing properties based on model failures, rather than based on 
the task description only, as discussed in Section 4.2.2. 

• Improve uncertainty estimates as failure modes are a useful indicator of the model certainty. 

• Generate synthetic datasets beyond what the robustness properties used so far can capture. 

As a concrete example, let us consider Figure 18 where we analyze the failure modes of the self-trained 
model for two traffic sign classes – priority road and maximum speed 100 km/h . Here, each column 
corresponds to either an individual sample or a cluster or samples with similar properties (x-axis), the 
rows are robustness properties (y-axis), and a square (e.g., ) denotes that a given sample is non-
robust. We can see that for the priority road class, the translation property is the strongest and breaks 
the majority of the samples. For the maximum speed class, the properties are complementary to each 
other. More importantly, by clustering similar non-robust samples and comparing them to the robust 
ones, we discover important failure modes shown in Figure 18 (bottom). For , the failure modes include 
semantic properties such as background being similar to the traffic sign, or strong direct sunlight. For , 
the failure modes are variations of extreme brightness conditions where both the background and traffic 
sign can be either very bright or very dark. Further, note that this analysis excluded most of the stronger 
properties defined in Section 4.2.1 for which the model robustness was very low. 

Translation
Scaling

Rotation
Adaptive Hue

Contrast
Blur

Shearing
Brightness

Gaussian Noise
Saturation

Uniform Noise
Hue

ColorDepth
Compression

Grayscale
Sharpening Priority Road Non-robust samples per property 

Translation
Scaling

Rotation
Adaptive Hue

Contrast
Blur

Shearing
Brightness

Gaussian Noise
Saturation

Uniform Noise
Hue

ColorDepth
Compression

Grayscale
Sharpening

. . . 

Brightness
Gaussian Noise

Translation
Scaling

Compression
ColorDepth

Adaptive Hue
Uniform Noise

Blur
Saturation

Rotation
Sharpening

Grayscale
Shearing

Hue
Contrast

Max. SpeedNon-robust samples per property 

. . . 

Brightness
Gaussian Noise

Translation
Scaling

Compression
ColorDepth

Adaptive Hue
Uniform Noise

Blur
Saturation

Rotation
Sharpening

Grayscale
Shearing

Hue
Contrast

similar direct object very low background background background background 
background sunlight occlusion brightness sign sign sign sign 

Figure 18: Example of failure mode analysis for the self-trained model. For a given property, each square denotes 
a non-robust sample (or a set of samples). Analysis of the robust (not shown) and non-robust samples identifies 
failure modes such as direct sunlight or various combinations of background and traffic sign brightness. 
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4.6 Enhancing datasets based on failure modes 

Dataset Fixed Failure Modes Synthetic 

Obtaining high-quality datasets is a significant difficulty that most deep learning systems face. As a re-
sult, there has been an enormous interest in developing automatic data augmentation techniques [25, 
21, 26, 16] as well as simulators explicitly tailored to self-driving cars [2, 1, 7, 5]. So far, we demon-
strated how robustness properties are used to define a larger synthetic dataset on which the model 
robustness is tested. In this section, we discuss two extensions of this approach – leveraging failure 
modes to generate synthetic datasets and checking the model generalization on a new dataset. 

Leverage failure modes to generate synthetic datasets In Section 4.5, we illustrated how failure 
modes can be used to gain insights into where the model is non-robust. Here, we discuss how they can 
be used to generate synthetic datasets, beyond those defined by the individual robustness properties. 
Concretely, let us use the maximum speed traffic sign , for which we identified four failure modes 
(shown in Figure 18). The failure modes correspond to different brightness conditions of the traffic sign 
and the image background. Our goal is to define new transformations to capture these failure modes, 
that is, transformations between bright and dark traffic signs and between bright and dark backgrounds. 
If these can be defined, then we can generate all four combinations synthetically. 

To achieve this, several different approaches can be used. The first approach is to extend the range of 
allowed perturbations based on the failure model. For example, brightness can change both by a small 
amount locally (as done so far) but also by a large amount, as specified by the failure mode. This would 
allow more expressive changes without degrading the model performance by allowing unrestricted 
perturbations. The disadvantage of this approach is that the properties relevant to the failure mode, 
which can be complex, must be already supported. In the second approach, instead of transforming 
one property into another (i.e., bright to dark), we find a traffic sign with the desired property and insert 
it in the original image. To insert the image, one needs to: (i) compute a mask that denotes the location 
of the traffic sign, and (ii) apply a sequence of geometric and spatial transformations that overlays the 
inserted traffic sign over the existing one, as shown in Figure 19. A third possible approach is to train 
a generative adversarial model [19] that learns the transformation between samples with and without 
the desired property. However, while extremely useful, we do note that investigating these approaches 
in more detail is out of the scope of this report. 

geometric 
+ + + + transforms = 

B Ñ A 

background background background sign mask B background mask A 
sign sign sign 

Figure 19: Failure modes examples for maximum speed traffic sign (left) and a transformation that converts 
between (right). To achieve this, the transformations merges two images with the desired properties (background 
and traffic sign is bright). 

Generalization to a new dataset To evaluate generalization to a new dataset, we use the DFG traffic 
sign dataset [28], which consists of 200 traffic sign categories collected in Slovenia. We manually cre-
ated a mapping to the classes represented in the GTSRB dataset and removed the remaining ones (we 
provide full details of our preprocessing in [13], Appendix E). The robustness of the best model (pre-
trained) on this new dataset decreased by 0.9%-3.4% for all but one property, as summarized below: 

BRIGHTNESS CONTRAST HUE SHARPEN BLUR ROTATION SHEAR TRANSLATION SCALE 

-1.2% -1.1% -2.6% -2.5% +1.7% -3.4% -0.9% -2.3% -3.4% 

The robustness did not decrease for blur because the DFG dataset has a significantly higher resolution. 
Further, the accuracy on the DFG dataset is significantly lower than that on the GTSRB dataset: it is 
7.4% lower for the pre-trained model (99% to 91.6%) and 13.1% lower for the self-trained model (97.4% 
to 84.3%). 
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5 Conclusion 

In this report, we presented a case study on assessing the reliability of two neural traffic sign classi-
fiers. To conduct the assessment, we used the LatticeFlow platform to systematically test the neural 
networks using the test dataset and a set of robustness properties, which capture important environ-
mental conditions that occur in practice. Concretely, the presented case study comprised the following 
tasks: 

1. Eliciting strong robustness properties and important task-specific properties tailored to a specific 
domain (i.e., traffic signs in our case); 

2. Testing using individual and composite robustness properties; 

3. Finding common failure modes based on the results, including transformations that cause failures 
and test inputs where the model is brittle; 

Our results show that the provided neural networks are robust to some of the basic generic properties. 
However, both networks lack robustness for stronger properties and important task-specific properties 
tailored to traffic signs (such as placing stickers on the road sign). In general, we observe that robustness 
properties with higher complexities lead to lower model robustness. Intuitively, this is because more 
complex properties define a larger space of image transformations, any of which can cause the model 
to fail. This is also partially because we tested the models for the worst-case image transformations. 
While this is necessary for correctly assessing where the model is failing and where it must be improved, 
it does provide a lower-bound on the robustness to average-case perturbations occurring benignly in 
the real-world. 

Overall, the case study results give valuable insights into a systematic and general methodology for the 
reliability assessment of neural networks. Further, we demonstrate that the test results are useful for 
identifying important failure modes, which help enhance the dataset with challenging scenarios. 

Finally, we note that we analyzed neural networks that, even though they achieve 99% accuracy, were 
trained by the BSI team using limited datasets and resources. The results hence do not transfer quan-
titatively to production models deployed in the current generation of self-driving cars. 
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A Appendix 

We provide full results and additional experiments, includng the formal specification of each robustness 
property, in the extended version of this report [13]. 
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